
 APPLICATION NOTE

M16C/26
Using the DMAC with a Forward Destination

1.0 Abstract
The following article introduces and shows an example of how to use the DMAC function of the M16C/26 with a

fixed source address and forward counting destination address.

2.0 Introduction
The Renesas M30262 is a 16-bit MCU based on the M16C/60 series CPU core. The MCU features include up to

64K bytes of Flash ROM, 2K bytes of RAM, and 4K bytes of virtual EEPROM. The peripheral set includes 10-bit

A/D, UARTs, Timers, DMA, and GPIO. The MCU has two DMAC (Direct Memory Access Controller) channels

that allow data to be transferred from a source memory location to a destination memory location without using

the CPU. The DMAC utilizes the same internal address and data busses as the CPU yet is given a higher priority

to the data bus than the CPU. This method of DMAC and CPU bus arbitration is termed “cycle stealing”.

Each DMAC controller is capable of transferring data to or from a fixed address to any other address within the

1Mbyte address space. The DMAC controllers can automatically transfer 128k bytes of data, using word (16bit)

transfers, or 64k bytes of data using byte (8-bit) transfers. The source or destination address can also be

auto-incremented. DMAC transfers can be initiated by an interrupt request signal or by manually writing to the

software DMA request bit. When requests are initiated by an interrupt request signal, neither the interrupt enable

flag (I flag) nor the interrupt priority level affects the DMA transfers.

3.0 DMAC with Fixed Source, Forward Destination Description
In the fixed source address, forward counting address mode, the DMAC controller will transfer bytes or words

from a fixed source address to an incrementing destination address (increments after each transfer). The

transfers can either be bytes or words. Loading a value into the transfer count register controls the number of

automated transfers. Transfers will continue to occur each time the DMAC trigger event occurs until the transfer

register underflows. Therefore, the number loaded into the transfer register should be 1 less than the number of

transfers desired. A control register bit determines whether each transfer is a byte or word of data.

 The DMAC controller can be configured to perform a single transfer cycle, in which case, the transfers stop after

the transfer register has underflowed. In repeat mode, the Destination Pointer register and the Transfer Counter

register are reloaded after the Transfer Counter register has underflowed. In repeat mode, transfers will occur

each time a trigger event occurs until the DMA enable bit is set inactive ("0").

REU05B0035-0100Z June 2003 Page 1 of 7

M16C/26
Using the DMAC with a Forward Destination

4.0 Configuring the DMAC for Fixed Source, Forward Destination
To configure a DMAC channel, the following choices must be configured (the configuration for this example are

shown in parentheses):

1. Select the DMA request cause (UART0 receive interrupt request) by setting DM0SL register to 0x0b.

2. Select fixed or forward source (fixed source) by setting bit-4 of DM0CON register to 0.

3. Select fixed or forward destination (forward destination) by setting bit-5 of DM0CON register to 1.

4. Select 8 or 16-bit transfers (8-bit transfers) by setting bit-0 of DM0CON register to 1.

5. Select a single transfer or multiple transfers (single transfer) by setting bit-1 of DM0CON register to 0.

6. Select source address for the transfer (UART0 receive buffer) by specifying SAR0.

7. Select the destination address for the transfer (Buffer address in RAM) by specifying DAR0.

8. Select the number of bytes to be transferred (10) by writing (9) in the Transfer Counter register.

The registers that are used to configure and control the DMAC channels are shown in and F . Figure 1

Figure 1 DMA0 Request Cause Select Register

igure 2

REU05B0035-0100Z June 2003 Page 2 of 7

M16C/26
Using the DMAC with a Forward Destination

Figure 2 DMA Control Registers

REU05B0035-0100Z June 2003 Page 3 of 7

M16C/26
Using the DMAC with a Forward Destination

5.0 Reference

Renesas Technology Corporation Semiconductor Home Page

http://www.renesas.com

E-mail Support

support_apl@renesas.com

Data Sheets

• M16C/26 datasheets, M30262eds.pdf

User’s Manual

• M16C/20/60 C Language Programming Manual, 6020c.pdf

• M16C/20/60 Software Manual, 6020software.pdf

• Application Note: Writing interrupt handlers in C for the M16C

• MSV30262-SKP Quick start guide, Quick_Start_Guide_MSB30262.pdf

• MSV30262-SKP Users Manual, Users_Manual_MSV30262.pdf

• MDECE30262 Schematics, Schematics_MDECE30262_RevA.pdf

6.0 Software Code
The example program was written to run on the MSV30262 Starter Kit but could be modified to implement in a

user application. The program is written in C and compiled with the KNC30 compiler. The program demonstrates

using the DMA0 channel to transfer data from a UART receive buffer to a buffer established in RAM. The

program performs a single transfer of 10 bytes from the UART0 receive buffer to memory. At the completion of

the transfer a DMA0 interrupt request is generated. UART0 on the starter kit board is connected to a 9-pin D-sub

connector that can be used to connect to a PC running a terminal program, such as HyperTerminal. With the

program running, keys typed into the terminal program will be transferred by the DMAC to the memory buffer.

To run program perform the following steps:

1. Load program “dma_fwd_des.x30” using KD30.

2. Set up COM port of PC and configure HyperTerminal to operate at 9600 BAUD, 1 Stop Bit, and No Parity.

Connect serial cable from COM port of PC to UART0 of starter kit board.

3. Execute program by pressing GO button on KD30.

4. Type 10 characters into the HyperTerminal window. Using Ram Monitor window of KD30, view received

data starting at address 0x0410.

REU05B0035-0100Z June 2003 Page 4 of 7

M16C/26
Using the DMAC with a Forward Destination

/**
* File Name: dma_fwd_dest.c
*
* Content: DMA fixed source to forward destination
**

===*
* $Log:$
===/

#include "sfr262.h" /* SFR register definition */

// prototypes
#pragma Interrupt dma0_isr
void mcu_init (void);
void uart_init (void);
void dma_init (void);

// declare buffer
unsigned char buffer[10];

/***
Name: main
Parameters: None
Returns: None
Description: Initializes the system and then loops forever.
**/
void main()
{
 mcu_init(); // initialize mcu to full Xin system clock
 // 20 MHz in MSV30262 board

 uart_init (); // initialize UART0 which is source of data
 dma_init (); // initialize DMA registers
 dmae_dm0con = 1; // enable DMA transfers
 asm ("fset I"); // enable interrupts
 re_u0c1 = 1; // enable UART0 receive

 while (1); //loop forever
 }

/***
Name: DMA_init
Parameters: None
Returns: None
Description: Initializes DMA for transfer from single source to multiple
 destinations set to transfer 16 bytes. Transfers each time there is
 an interrupt request from UART0.
***/

REU05B0035-0100Z June 2003 Page 5 of 7

M16C/26
Using the DMAC with a Forward Destination

void dma_init(void)
{
 dm0sl = 0x0b;

 /* 00001011; DMA0 trigger select UART0 receive
 ||||||||------(DSEL0) the four bits (DSEL3-DSEL0) set the DMA
 |||||||-------(DSEL1) request cause. set for UART0 receive
 ||||||--------(DESEL2)
 |||||---------(DSEL3)
 ||||---------- not used set to 0
 |||----------- not used set to 0
 ||------------(DMS) DMA request cause expansion bit to normal
 |-------------(DSR) set to 1 to generate DMA request
 if software trigger selected */

 dm0con = 0X21;

 /* 00100001; DMA0 trigger select UART0 receive
 ||||||||------(DMBIT) transfer unit bit select bit 1 = 8 bits
 |||||||-------(DMASL) repeat transfer mode 0 = single transfer
 ||||||--------(DMAS) DMA request bit can only be set to 0
 |||||---------(DMAE)DMA enable bit 0= disabled
 ||||----------(DSD)source address direction 0 = fixed
 |||-----------(DAD)destination address direction 1 = forward
 ||------------ not used set to 0
 |------------- not used set to 0 */

 sar0 = (unsigned long)&u0rb; // set source to address of uart0
 // receiving buffer

 dar0 = (unsigned long)&buffer[0];// set destination register to
 // beginning of buffer

 tcr0 = 0x9; // set transfer counter to transfer 10
 // bytes
 // (number of transfers desired -1)
 dm0ic = 0x04; // set interrupt priority for DMA to 4

}

/***
Name: dma0_isr
Parameters: None
Returns: None
Description: This service routine is entered after the completion of the DMA
 transfer.
***/
void dma0_isr(void)
{

}

REU05B0035-0100Z June 2003 Page 6 of 7

M16C/26
Using the DMAC with a Forward Destination

/***
Name: uart_init
Parameters: None
Returns: None
Description: Initializes uart for 9600 baud, 1 stop bit no parity.
***/
void uart_init(void)
{
 int dummy;

 // Configure Uart0 for 9600 baud, 8 data bits, 1 stop bit, no parity

 u0mr = 0x05; // set mode register
 u0c0 = 0x10; // set control register
 u0brg = 0x81; // set bit rate generator
 // (20Mhz/16/9600)-1

 dummy = u0rb; // clear receive buffer by reading

 s0tic = 0x00; // disable UART0 interrupts
}

/***
Name: mcu_init
Parameters: None
Returns: None
Description: Initializes mcu for full Xin system clock - 20 MHz in MSV30262 board
***/
void mcu_init(void){ //Initialize mcu for sull speed (20MHz) operation

 prc0 = 1; /* Unlock CM0 and CM1 */
 cm0 = 0x08; /* Enable divider selected by CM1 */
 cm1 = 0x20; /* Select no division, high Xin drive */
 cm2 = 0x0; /* disable stop detection, main clock - Xin */
 prc0 = 0; // Lock the System Clock Control Register
}

REU05B0035-0100Z June 2003 Page 7 of 7

Keep safety first in your circuit designs!

• Renesas Technology Corporation puts the maximum effort into making semiconductor products

better and more reliable, but there is always the possibility that trouble may occur with them. Trouble
with semiconductors may lead to personal injury, fire or property damage.
Remember to give due consideration to safety when making your circuit designs, with appropriate
measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or
(iii) prevention against any malfunction or mishap.

Notes regarding these materials

• These materials are intended as a reference to assist our customers in the selection of the Renesas
Technology Corporation product best suited to the customer's application; they do not convey any
license under any intellectual property rights, or any other rights, belonging to Renesas Technology
Corporation or a third party.

• Renesas Technology Corporation assumes no responsibility for any damage, or infringement of any
third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms,
or circuit application examples contained in these materials.

• All information contained in these materials, including product data, diagrams, charts, programs and
algorithms represents information on products at the time of publication of these materials, and are
subject to change by Renesas Technology Corporation without notice due to product improvements
or other reasons. It is therefore recommended that customers contact Renesas Technology
Corporation or an authorized Renesas Technology Corporation product distributor for the latest
product information before purchasing a product listed herein.
The information described here may contain technical inaccuracies or typographical errors.
Renesas Technology Corporation assumes no responsibility for any damage, liability, or other loss
rising from these inaccuracies or errors.
Please also pay attention to information published by Renesas Technology Corporation by various
means, including the Renesas Technology Corporation Semiconductor home page
(http://www.renesas.com).

• When using any or all of the information contained in these materials, including product data,
diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total
system before making a final decision on the applicability of the information and products. Renesas
Technology Corporation assumes no responsibility for any damage, liability or other loss resulting
from the information contained herein.

• Renesas Technology Corporation semiconductors are not designed or manufactured for use in a
device or system that is used under circumstances in which human life is potentially at stake. Please
contact Renesas Technology Corporation or an authorized Renesas Technology Corporation product
distributor when considering the use of a product contained herein for any specific purposes, such as
apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea
repeater use.

• The prior written approval of Renesas Technology Corporation is necessary to reprint or reproduce in
whole or in part these materials.

• If these products or technologies are subject to the Japanese export control restrictions, they must be
exported under a license from the Japanese government and cannot be imported into a country other
than the approved destination.
Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the
country of destination is prohibited.

• Please contact Renesas Technology Corporation for further details on these materials or the
products contained therein.

	Abstract
	Introduction
	DMAC with Fixed Source, Forward Destination Description
	Configuring the DMAC for Fixed Source, Forward Destination
	Reference
	Software Code

